Mesh-based computer generated hologram and its display using waveguide type near-eye-display configuration

Jae-Hyeung Park, Han-Ju Yeom, Yeong-Min Ji, BoNi Li, HuiJun Zhang, Hee-Jae Kim, Sang-Hoo Kim, and Sung-Bok Kim

School of Information and Communication Engineering, Inha University, Incheon 402-751, Korea Tel.:82-32-860-7432, E-mail: jh.park@inha.ac.kr

Near-Eye-Displays have been attracting growing attention recently due to its wearable form factor and potential applications in augmented or mixed reality. In the near-eye-displays, the accommodation-vergence mismatch is one of the important issues to be solved for realistic three-dimensional image presentation and long-term safety. Holography provides a promising solution in presenting realistic three-dimensional images which are free from the accommodation-vergence mismatch and therefore is suitable for the near-eye-displays. However, the contents generation and system implementation for the holography still require extensive research.

In this talk, we explain our recent work on the holographic contents generation and the holographic near-eyedisplay. Holographic contents can be synthesized from the real-existing three-dimensional objects or computer graphics models.[1] We introduce the hologram synthesis from computer graphics models which are represented by a collection of triangular meshes.[2] In this method, the angular spectrum of each triangular mesh is calculated analytically and added in the hologram plane to form the hologram of whole three-dimensional scene. What we introduce mainly is the removal of the dark line artifact on the mesh boundary which occurs due to phase mismatch between the neighboring meshes.[3] We also explain the enhancement of the shading effect on the mesh surface to achieve more realistic representation of the three-dimensional images.

Fig. 1. Concept of mesh-based hologram calculation and its display

For the near-eye-display, we introduce the waveguide type structure as shown in Fig. 1. The holographic threedimensional images displayed by a spatial light modulator are delievered to the observer's eye through total internal reflections in the waveguide. The input-output coupling of the holographic images to the waveguide and the system design are discussed with the preliminary experimental results in the talk.

Acknowledgment

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2013-061913).

References

- 1. H. Kim, J. Hahn, and B. Lee, Appl. Opt. 47, D117-D127 (2008).
- 2. J.-H. Park, S.-K. Lee, N.-Y. Jo, H.-J. Kim, Y.-S. Kim, and H.-G. Lim, Opt. Express, 22(21), 25444, (2014).
- 3. J.-H. Park, H.-J. Yeom, H.-J. Kim, H. Zhang, Bo. Li, Y.-M. Ji, and S.-H. Kim, Opt. Express, 23(6), 8006, (2015).